Dynamics Review \#2

1. Two boxes are resting beside each other. One is 15 kg and the other is 23 kg . If I push with 75 N on the 15 kg box, find
a. The acceleration
b. The force the 15 kg exerts on the 23 kg box
2. Two sisters are skating on ice with no friction. One sister is 30 kg and the other is 40 kg . Find the acceleration of each person if the first girl pushes her sister with 200N.
3. While standing in an elevator, I hold a 5 kg bag of groceries. How heavy (force) does the bag feel if the elevator
a. Is moving at a constant $3 \mathrm{~m} / \mathrm{s}$ up
b. Is accelerating at $3 \mathrm{~m} / \mathrm{s}^{2}$ up
c. Is accelerating at $3 \mathrm{~m} / \mathrm{s}^{2}$ down
4. What applied force accelerates a 20 kg stone straight up into the air at $10 \mathrm{~m} / \mathrm{s}^{2}$?
5. A crane needs to lift a 1000 kg load to the top of a 50 m building in a minimum time of half a minute. If the load starts on the ground at rest, find the minimum strength of the cable needed. Hint: The load can have a constant acceleration. Find this first.
6. If I pull up on a giant 300 kg peach with 300 N , find the normal force.
7. If I pull a 20 kg sled with 30 N upwards at an angle of 40°, Find
a. The normal force
b. The net force
c. The acceleration
8. While pushing a frictionless lawn mower with 70 N at an unknown angle I accelerate the 7 kg mower at $3 \mathrm{~m} / \mathrm{s}^{2}$, find
a. The x-direction (forward) force I apply
b. The angle I'm pushing at
c. The normal force on the mower.
9. Find the mass of m_{2} in order for there to be an acceleration of $2.5 \mathrm{~m} / \mathrm{s}^{2}$ up the ramp?

Dynamics Review \#2 - Answers

1. a) $a=1.97 \mathrm{~m} / \mathrm{s}^{2}$
b) $F=45.3 \mathrm{~N}$
2. $a_{1}=6.67 \mathrm{~m} / \mathrm{s}^{2}$
$\mathrm{a}_{2}=-5.00 \mathrm{~m} / \mathrm{s}^{2}$
3. a) $F_{a}=49 N$
b) $F_{a}=64 N$
c) $F_{a}=34 \mathrm{~N}$
4. $F_{a}=396 \mathrm{~N}$
5. $a=0.111 \mathrm{~m} / \mathrm{s}^{2}$
$\mathrm{F}_{\mathrm{T}}=9911 \mathrm{~N}$
6. $F_{N}=2640 N$
7. a) $\mathrm{F}_{\mathrm{N}}=177 \mathrm{~N}$
b) $F_{\text {net }}=23.0 \mathrm{~N}$
c) $a=1.15 \mathrm{~m} / \mathrm{s}^{2}$
8. a) $F_{a x}=21 N$
b) $\theta=72.5^{0}$ Below horizontal
c) $\mathrm{F}_{\mathrm{N}}=135 \mathrm{~N}$
9. $m=12.8 \mathrm{~kg}$
