Dynamics Review 1

1.

If the mass starts at rest, how long does it take to travel 75 m ?
2. A child pushes a 10 kg wagon along with a downward force of 50 N at an angle of 40° below the horizontal.
a. Draw a free body diagram
b. What is the acceleration of the wagon? (Ignore friction)
c. What is the normal force on the wagon?
3. Mike pushes a 900 kg car with a force of 300 N West, and Sally pushes the car with a force of 500N South.
a. What is the resultant force?
b. What is the force of friction if they are able to accelerate the car from rest to a velocity of $5 \mathrm{~m} / \mathrm{s}$ in 20 m ?
4. A 75 kg cyclists needs to accelerate at a rate of $5.0 \mathrm{~m} / \mathrm{s}^{2}$. What net force must be provided? (Ignore friction)
5. What is the acceleration in $\mathrm{m} / \mathrm{s}^{2}$ of a 500 gram object undergoing a force of 6 N ?
6. What force is required to stop an 8000 kg fighter jet in 2.0 s if it has a velocity of $100 \mathrm{~km} / \mathrm{h}$? (Like on a aircraft carrier)
7. A 50 g mass on a string hangs over a pulley. The other end of the string is attached to a toy car.
a. If the acceleration of the toy car is $3.0 \mathrm{~m} / \mathrm{s}^{2}$, what is the mass of the car?
b. Using the mass from part a, what is the acceleration if there is now 0.25 N of friction?
8. If a cable has a safety rating of $20,000 \mathrm{~N}$ and has a load of 1000 kg , find the minimum safest distance the object can fall if it reaches a falling speed of $10 \mathrm{~m} / \mathrm{s}$.
9. What force must I apply in order to keep a puck sliding at a constant velocity if there is 5 N of friction?
10. The gravity of the moon is $1 / 6^{\text {th }}$ that on earth. Find the weight (force) of an 80 kg person on the moon.

Dynamics Review 1 - Answers

1. $\mathrm{t}=7.32 \mathrm{~s}$
2. a)

b) $\mathrm{a}=3.83 \mathrm{~m} / \mathrm{s}^{2}$
c) $\mathrm{F}_{\mathrm{N}}=130 \mathrm{~N}$
3. a) Fnet $=583 \mathrm{~N}\left[59.0^{\circ}\right.$ SofW $]$
b) $\mathrm{F}_{\mathrm{f}}=20.5 \mathrm{~N}\left[59.0^{0} \mathrm{NofE}\right]$
4. $F=375 \mathrm{~N}$
5. $\mathrm{a}=12 \mathrm{~m} / \mathrm{s}^{2}$
6. $F=-111,000 \mathrm{~N}$
7. a) $\mathrm{m}=0.113 \mathrm{~kg} \quad$ b) $\mathrm{a}=1.47 \mathrm{~m} / \mathrm{s}^{2}$
8. $\mathrm{d}=4.90 \mathrm{~m}$
9. $\mathrm{F}=5 \mathrm{~N}$ in the opposite direction of friction
10. $\mathrm{Fg}_{\mathrm{g}}=131 \mathrm{~N}$
